Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.17.585388

ABSTRACT

SARS-CoV-2 infection triggers strong antibody response toward Nucleocapsid-Protein (NP), suggesting extracellular presence beyond its intra-virion RNA binding. Interestingly, NP was found to decorate infected and proximal uninfected cell-surfaces. Here, we propose a new mechanism through which extracellular NP on uninfected cells contributes to COVID-19 pathogenicity. We show that NP binds to cell-surface sulfated linear-glycosaminoglycans by spatial rearrangement of its RNA-binding sites facilitated by the flexible, positively charged, linker. Coating of uninfected lung-derived cells with purified NP attracted anti-NP-IgG from lung fluids and sera collected from COVID-19 patients. The magnitude of this immune recognition was significantly elevated in moderate compared to mild COVID-19 cases. Importantly, binding of anti-NP-IgG present in sera generated clusters that triggered C3b deposition by the classical complement pathway. Heparin analog enoxaparin outcompeted NP-binding, rescuing cells from anti-NP IgG-mediated complement deposition. Our findings unveil how extracellular NP may exacerbate COVID-19 tissue damage, and suggest leads for preventative therapy.


Subject(s)
COVID-19 , Infections
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.17.480851

ABSTRACT

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable 'sterilizing immunity' at the mucosal level. Our study uncovers, strong neutralizing mucosal component (NT50 [≤] 50pM), emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the Receptor-Binding-Domain (RBD) of SARS-CoV-2 spike protein and demonstrate that these IgAs are key mediators of potent neutralization. RBD-targeting IgAs were found to associate with the Secretory Component, indicating their bona-fide transcytotic origin and their dimeric tetravalent nature. The mechanistic understanding of the exceptionally high neutralizing activity provided by mucosal IgA, acting at the first line of defence, will advance vaccination design and surveillance principles, pointing to novel treatment approaches, and to new routes of vaccine administration and boosting.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.02.04.429751

ABSTRACT

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and Nucleocapsid (N) proteins from SARS-CoV-2, and obtained cross-link sets with an average density of one cross-link per twenty residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites, and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and inter-domain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryo-EM structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.

SELECTION OF CITATIONS
SEARCH DETAIL